Virtual screening of secondary metabolites of Origanum vulgare and marjoram against NaV1.7 as promising anesthetics associated with the auditory neurosensory pathway

Main Article Content

Carlos Arturo Vélez Duncan
Alejandro Uribe Escobar
Rafael Pineda Alemán
Neyder Contreras Puentes
Antistio Alviz Amador

Abstract

Introduction: In general, oregano is a medicinal plant used in rural areas of the colombian


Caribbean coast to treat conditions of the respiratory system and external ear due to its potential anti-inflammatory, analgesic and antiseptic effect, however, it has not been validated through clinical trials. Objective: To carry out a virtual screening based on molecular coupling of secondary metabolites identified in Origanum vulgare and marjoram against the Nav1.7 receptor to evaluate the potential anesthetic effect at the level of the external ear. Method: This is an in-silico study with a virtual molecular docking screening approach, for which the AutoDock Vina


software was used and the Swiss Institute of Bioinformatics (http://www.sib.swiss) online tool SwissADME was used for pharmacokinetic predictions. Additionally, the in-silico toxicity of the molecules was evaluated using the GUSAR-Online server. Results: Of the 99 molecules that were evaluated by molecular coupling, it was shown that the highest affinities with respect to the Nav1.7 channel were chlorogenic acid, rutin, luteolin, luteoside and apigenin, where affinity energies were presented with the binding site in the central pore of the channel at values between -5.40 ±


0.00 to -5.57 ± 0.06 kcal/mol, which according to the ADMET and GUSAR analysis,only chlorogenic acid, luteolin and apigenin are good potential candidates for anesthetic drugs complying with the 5 rules of Lipinsky

Article Details

Section

Trabajos Originales

How to Cite

1.
Virtual screening of secondary metabolites of Origanum vulgare and marjoram against NaV1.7 as promising anesthetics associated with the auditory neurosensory pathway. Acta otorrinolaringol cir cabeza cuello [Internet]. 2023 Mar. 31 [cited 2025 Dec. 26];51(1):29-34. Available from: https://www.revista.acorl.org.co/index.php/acorl/article/view/676

References

1. Soria N, Ramos P. Uso de plantas medicinales en la Atención Primaria de Salud en Paraguay: algunas consideraciones para su uso seguro y eficaz. Mem. Inst. Invest. Cienc. Salud. 2015;13(2):8-17.

2. Bouyahya A, Chamkhi I, Benali T, Guaouguaou FE, Balahbib A, El Omari N, et al. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. J Ethnopharmacol.2021;265:113318. doi:10.1016/j.jep.2020.113318

3. Rezaie A, Jafari B, Mousavi G, Nazeri M, Ebadi A, Ahmadeh C, et al. Comparative Study of Sedative, Pre-Anesthetic and Anti-Anxiety Effect of Origanum majorana Extract with Diazepam on Rats. Res J Biol Sci. 2011;6(11):611-4. doi: 10.3923/rjbsci.2011.611.614

4. Chuang LT, Tsai TH, Lien TJ, Huang WC, Liu JJ, Chang H, et al. Ethanolic Extract of Origanum vulgare Suppresses Propionibacterium acnes-Induced Inflammatory Responses in Human Monocyte and Mouse Ear Edema Models. Molecules. 2018;23(8):1987. doi: 10.3390/molecules23081987

5. Fryatt AG, Vial C, Mulheran M, Gunthorpe MJ, Grubb BD. Voltage-gated sodium channel expression in rat spiral ganglion neurons. Mol Cell Neurosci. 2009;42(4):399-07. doi: 10.1016/j.mcn.2009.09.001

6. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13. doi: 10.1093/nar/gkv951

7. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33

8. Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science. 2015;350(6267):aac5464. doi: 10.1126/science.aac5464

9. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303. doi: 10.1093/nar/gky427

10. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334

11. Laskowski RA, Swindells MB. LigPlot+: multiple ligandprotein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-86. doi: 10.1021/ci200227u

12. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep.2017;7:42717. doi: 10.1038/srep42717

13. Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol Inform. 2011;30(2-3):241-50. doi: 10.1002/minf.201000151

14. Afarineshe Khaki MR, Pahlavan Y, Sepehri G, Sheibani V, Pahlavan B. Antinociceptive Effect of Aqueous Extract of Origanum vulgare L. in Male Rats: Possible Involvement of the GABAergic System. Iran J Pharm Res. 2013;12(2):407-13.

15. De Falco E, Mancini E, Roscigno G, Mignola E, Taglialatela- Scafati O, Senatore F. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules. 2013;18(12):14948-60. doi: 10.3390/molecules181214948

16. Lombrea A, Antal D, Ardelean F, Avram S, Pavel IZ, Vlaia L, et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int J Mol Sci. 2020;21(24):9653. doi: 10.3390/ijms21249653

17. Tsuchiya H. Anesthetic Agents of Plant Origin: A Review of Phytochemicals with Anesthetic Activity. Molecules. 2017 Aug 18;22(8):1369. doi: 10.3390/molecules22081369

18. Taamalli A, Arráez-Román D, Abaza L, Iswaldi I, Fernández- Gutiérrez A, Zarrouk M, et al. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem Anal. 2015;26(5):320-30. doi: 10.1002/pca.2566

19. Mahmoudian-Sani MR, Hashemzadeh-Chaleshtori M, Asadi-Samani M, Luther T. A Review of Medicinal Plants for the Treatment of Earache and Tinnitus in Iran. Int Tinnitus J.2017;21(1):44-49. doi: 10.5935/0946-5448.20170009

20. Gómez-Estrada H, Díaz-Castillo F, Franco-Ospina L, Mercado- Camargo J, Guzmán-Ledezma J, Medina JD, et al. Folk medicine in the northern coast of Colombia: an overview. J Ethnobiol Ethnomed. 2011;7:27. doi: 10.1186/1746-4269-7-27

21. Cardona LM, Cardona LM, Díaz APS, Corrales JAP. Uso de plantas medicinales en enfermedades otorrinolaringológicas. Rev Cuba Otorrinolaringol y Cirugía Cabeza y Cuello.2020;4(3):1-13.

22. Silva FV, Guimarães AG, Silva ER, Sousa-Neto BP, Machado FD, Quintans-Júnior LJ, et al. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J Med Food. 2012;15(11):984-91. doi: 10.1089/jmf.2012.0102

23. Ebani VV, Nardoni S, Bertelloni F, Najar B, Pistelli L, Mancianti F. Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines (Basel). 2017;4(2):21. doi: 10.3390/medicines4020021

24. Ghelardini C, Galeotti N, Mazzanti G. Local anaesthetic activity of monoterpenes and phenylpropanes of essential oils. Planta Med. 2001;67(6):564-6. doi: 10.1055/s-2001-16475

25. da Cunha JA, Scheeren C, Salbego J, Gressler LT, Madaloz LM, Bandeira Junior G, et al. Essential oils of Cunila galioides and Origanum majorana as anesthetics for Rhamdia quelen: Efficacy and effects on ventilation and ionoregulation. Neotrop Ichthyol. 2017;15(1):e160076. doi: 10.1590/1982-0224-20160076

26. Kakita K, Tsubouchi H, Adachi M, Takehana S, Shimazu Y, Takeda M. Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats. Neurosci Res. 2018;134:49-55. doi: 10.1016/j.neures.2017.11.009

Most read articles by the same author(s)